PROGRAMMING IN JAVA
LABORATORY

(SEMESTER-VI of B.Tech)

As per the curricullam and syllabus
of

Bharath Institute of Higher Education & Research

Programming in Java laboratory

Bharath

ier 4. INSTITUTE OF HIGHER EDUCATION AND RESEARCH
A [Declared as Deemed - to - be - University under section 3 of UGC Act 1956)

ACCREDITED WITH ‘A’ GRADE BY NAAC

PREPARED BY
Mr.A V Allin Geo

NEW EDITION

Wharath

INSTITUTE OF HIGHER EDUCATION AND RESEARCH

(Declared as Deemed-to-be University under section 3 of UGC Act, 1956)
(Vide Notification No. F.9-5/2000 - U.3, Ministry of Human Resource Development, Gowt. of India, dated 4" July 2002)

M ABET

NATIONAL ASSESS| ANI
ACCREDITATION COUNCIL

1|Page

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

LAB MANUAL

SUBJECT NAME: PROGRAMMING IN JAVA

SUBJECT CODE: BCS6L3

Regualtion 2015
(2015-2016)

2|Page

BCS6L3 PROGRAMMING IN JAVA LABORATORY L T P

N0

Total Contact Hours - 30 0 0 3

Prerequisite —\Fundamentals of Computing and Programming, Object Oriented
Programming Using C++

Lab Manual Designed by — Dept. of Computer Science and Engineering.

OBJECTIVES
The Main objective of this Lab manual is Develop CUI and GUI application using Java Programming.

COURSE OUTCOMES (COs)

Co1

Identify classes, objects, members of a class and the relationships among them for a
Specific problem.

CO2 | Develop programs using appropriate packages for Inter —thread Communication and
Synchronization.

CO3 | Develop GUI applications to handle events.

CO4 | Develop client server based applications.

CO5 | Design, develop, test and debug Java programs using object-oriented principles in
Conjunction with development tools including integrated development environments.

CO6 | Develop Applets Programs.

MAPPING BETWEEN COURSE OUTCOMES & PROGRAM OUTCOMES

(3/2/1 INDICATES STRENGTH OF CORRELATION) 3- High, 2- Medium, 1-Low

COs [PO1|PO2|PO3|PO4|PO5|PO6|PO7 PO8 [PO9 PO10 PO11 PO12 |PSO1 PSO2 PSO3
CO1 313|313 3 3 2 2

CO2 2

COs3 2 123 |33 2 2 3 2

CO4 3 3 2

CO5 3|13 2 2

CO6 113]2 2 3| 2 2 2 2

Category |Professional Core (PC)

Approval [37th Meeting of Academic Council, May 2015

JAVA PROGRAMS USING FOLLOWING CONCEPTS

CONOOT S WN PR

3|Page

. Classes& Obijects.

. Constructors & Destructors.
. Methods Overloading.

. Inheritance.

. Interface.

. Multithreading.

. Package.

. Creating Java Applets.

4|Page

PROGRAMMING IN JAVA LABORATORY-BCS6L3

LIST OF EXPERIMENTS

S.NO NAME OF THE EXPERIMENT
1 Classes & Objects
2 Constructors & Destructors
3 Methods Overloading
4 Inheritance
5 Interface
6 Multithreading
7 Package
8 Creating Java Applets

CONTENT

S.NO NAME OF THE EXPERIMENT PAGE NO
1 Classes & Objects 5
2 Constructors & Destructors 10
3 Methods Overloading 12
4 Inheritance 15
5 Interface 18
6 Multithreading 20
7 Package 23
8 Creating Java Applets 24

5|Page

EX.No.1 CLASSES AND OBJECTS

A Write a Program in Java to implement the Classes and Objects.
ALGORITHM:
STEP 1: Start the Program
STEP 2: Create Class
STEP 3: Declare the Input and Output Variables
STEP 3: Create object and access the method
STEP 4: Implement it with return type and without parameter list
STEP 5: Implement it with return type and with parameter list
STEP 6: Implement the constructor by creating classes and objects
SOURCE CODE:

class Student{

intid,;

String name;

}

class TestStudent3{

public static void main(String args[]){
/[Creating objects
Student s1=new Student();
Student s2=new Student();
/Nnitializing objects

s1.id=101;

sl.name="Sonoo";

s2.id=102;

s2.name="Amit";

/[Printing data
System.out.printIn(sl.id+" "+sl.name);
System.out.printin(s2.id+" "+s2.name);

¥

6|Page

¥

class Student{

int rolino;

String name;

void insertRecord(int r, String n){
rollno=r;
name=n;

}

void displayInformation(){System.out.printin(rollno+" "+name);}

}

class TestStudent4{

public static void main(String args[]){
Student s1=new Student();
Student s2=new Student();
sl.insertRecord(111,"Karan");
s2.insertRecord(222,"Aryan™);
sl.displaylnformation();
s2.displayInformation();

¥
k

#Creating multiple objects by one type only
//Java Program to illustrate the use of Rectangle class which
/Ihas length and width data members
class Rectangle{
int length;
int width;
void insert(int I,int w){
length=l,
width=w;
}
void calculateArea(){System.out.printin(length*width);}
}
class TestRectangle2{
public static void main(String args[]){

7|Page

Rectangle rl=new Rectangle(),r2=new Rectangle();//creating two objects
rl.insert(11,5);

r2.insert(3,15);

rl.calculateArea();

r2.calculateArea();

OUTPUT:

101 Sonoo
102 Amit

111 Karan
222 Aryan

55
45

/lJava Program to demonstrate the working of a banking-system
/lwhere we deposit and withdraw amount from our account.
/[Creating an Account class which has deposit() and withdraw() methods
class Account{

int acc_no;

String name;

float amount;

//Method to initialize object

void insert(int a,String n,float amt){

acc_no=ga;

name=n;

amount=amt;

¥

8|Page

/[deposit method

void deposit(float amt){
amount=amount+amt;
System.out.printin(amt+" deposited™);
}

/Iwithdraw method

void withdraw(float amt){
if(amount<amt){
System.out.printin("Insufficient Balance");
Yelse{

amount=amount-amt;
System.out.printin(amt+" withdrawn");

¥
¥

/Imethod to check the balance of the account

void checkBalance(){System.out.printIn("Balance is: "+amount);}
/Imethod to display the values of an object

void display(){System.out.printIn(acc_no+" "+name+" "+amount);}
}

/[Creating a test class to deposit and withdraw amount

class TestAccount{

public static void main(String[] args){

Account al=new Account();

al.insert(832345,"Ankit",1000);

al.display();

al.checkBalance();

al.deposit(40000);

al.checkBalance();

al.withdraw(15000);

al.checkBalance();

i

832345 Ankit 1000.0
Balance is: 1000.0
40000.0 deposited
Balance is: 41000.0
15000.0 withdrawn
Balance is: 26000.0

RESULT:

Thus the Java program to implement classes and objects was written, executed and the output
was verified successfully.

10| Page

EX.No.2 CONSTRUCTORS & DESTRUCTORS

AlIM:
To write a program in java with Constructors and destructors
ALGORITHM:
STEP 1: Start the Program
STEP 2: Declare and Initialize the input variables
STEP 3: Create the Constructors
STEP 4: Create various methods for Subclass
STEP 5: In derived class extend the previous class
STEP 6: In main class specify the values and create the object
STEP 7. Stop
SOURCE CODE:

/I import java.io.*;

class Geek
{
int num;

String name;

/I this would be invoked while an
object

/I of that class is created.
Geek()

{

System.out.printIn("Constructor
called™);

11| Page

¥

class GFG

{

public static void main (String[]
args)

{

// this would invoke default

constructor.
Geek geekl = new Geek();

/I Default constructor provides
the default

I values to the object like 0, null
System.out.printin(geek1.name);

System.out.printin(geek1.num);

¥
OUTPUT:

Constructor called

null

0

Param

RESULT:

Thus the program in java with Constructors and destructors is executed successfully and the
output is verified

12| Page

EX.No.3 METHOD OVERLOADING
AlIM:

To write a program in java to implement method overloading
ALGORITHM:

STEP 1: Start the Program

STEP 2: Initialize the File Pointer

STEP 3: Create the class Sum

STEP 4: Overload Sum with two parameters

STEP 5: Create int sum

STEP 6: Create another overloaded sum with two double parameters
STEP 7: In main function create the object and call the methods
STEP 8: Print the data in the file

SOURCE CODE:

// Java program to demonstrate working of method
I/ overloading in Java.

public class Sum {
I/l Overloaded sum(). This sum takes two int parameters
public int sum(int x, int y)

{
ks

return (X +);

I/l Overloaded sum(). This sum takes three int parameters
public int sum(int x, inty, int z)

{
¥

return (X +y + 2);

/I Overloaded sum(). This sum takes two double parameters
public double sum(double x, double y)

{
k

13| Page

return (X +v);

// Driver code

public static void main(String args[])

{
Sum s = new Sum();
System.out.printin(s.sum(10, 20));
System.out.printin(s.sum(10, 20, 30));
System.out.printin(s.sum(10.5, 20.5));

}

¥

OUTPUT:

30
60
31.0

#Adding Numbers

static int plusMethodInt(int x, int y) {
return X +;

}

static double plusMethodDouble(double x, double y) {
return X +y;

}

public static void main(String[] args) {
int myNum1 = plusMethodInt(8, 5);
double myNumz2 = plusMethodDouble(4.3, 6.26);
System.out.printin("int: " + myNum1l);

System.out.printin(“double: " + myNum2);
}

14| Page

OUTPUT:

int: 13

double: 10.559999999999999

RESULT:

Thus the Java program to implement method overloading and the output was verified
successfully.

15| Page

EX. No.4 INHERITANCE

AlIM:
To write a program in Java to implement Inheritance.
ALGORITHM:
STEP 1: Start the Program
STEP 2: Declare and Initialize the input variables
STEP 3: Create the class Bicycle
STEP 4. Create the constructor for Bicycle class.
STEP 5: Create various methods for Subclass
STEP 6: In derived class extend the previous class
STEP 7: In main class specify the values and create the object
STEP 8: Stop
SOURCE CODE:

class Bicycle {
/I the Bicycle class has two fields
public int gear;
public int speed,

/I the Bicycle class has one constructor
public Bicycle(int gear, int speed)
{

this.gear = gear;
this.speed = speed;
}

/I the Bicycle class has three methods
public void applyBrake(int decrement)

{
¥

public void speedUp(int increment)

{
k

/[toString() method to print info of Bicycle

speed -= decrement;

speed += increment;

16 |Page

public String toString()
{

return ("No of gears are " + gear + "\n"
+ "speed of bicycle is " + speed);
}

¥

/I derived class
class MountainBike extends Bicycle {

/I the MountainBike subclass adds one more field
public int seatHeight;

// the MountainBike subclass has one constructor
public MountainBike(int gear, int speed,

int startHeight)
{

Il invoking base-class(Bicycle) constructor
super(gear, speed);
seatHeight = startHeight;

}

/I the MountainBike subclass adds one more method
public void setHeight(int newValue)
{

seatHeight = newValue;

}

I/ overriding toString() method
/I of Bicycle to print more info
@Override public String toString()
{
return (super.toString() + "\nseat height is "
+ seatHeight);
}

ks

/I driver class
public class Test {
public static void main(String args[])

{

MountainBike mb = new MountainBike(3, 100, 25);
System.out.printin(mb.toString());

¥
ks

17 |Page

Output

No of gears are 3
Speed of bicycle is 100
Seat height is 25

Result:

Thus the program in java to implement Inheritance is executed successfully and the output is verified.

18| Page

EX.No.5

AlIM:

INTERFACE

To write a program in Java to implement Interface

ALGORITHM:

STEP 1: Start the Program

STEP 2: Import the GUI packages

STEP 3: Create new frame and set sizes

STEP 4: In showeventdemo add button and listeners

STEP 5: In buttonclicklistener check whether the button is clicked
STEP 6: STOP

SOURCE CODE

import java.io.*;
/I A simple interface
interface Inl
{
/I public, static and final

final inta = 10;

// public and abstract
void display();
}
Il A class that implements the interface.
class TestClass implements Inl
{
/I Implementing the capabilities of

/I interface.
19| Page

public void display()

{
System.out.printin("Geek");

/I Driver Code

public static void main (String[] args)

{

TestClass t = new TestClass();

t.display();
System.out.printin(a);

¥
RESULT:

Thus the program in java to implement Interface is executed successfully and the output is verified

20| Page

EX. No. 6 MULTI THREADING
AIM:
To write a Program in Java to implement Multi Thread.
ALGORITHM:
STEP 1: Start the Program
STEP 2: Declare and Initialize the Variables
STEP 3: Create the class Multi-Threading Demo
STEP 4: Declare the method run
STEP 5: Create the class Multithreads
STEP 6: Specify number of Threads
STEP7: In main method create the object and start
STEP 8: Stop
SOURCE CODE:

// Java code for thread creation by extending

/I the Thread class

class MultithreadingDemo extends Thread {

public void run()

{

21| Page

try {
// Displaying the thread that is running
System.out.printin(
"Thread " + Thread.currentThread().getld()
+ " is running");
}

catch (Exception e) {

/l Throwing an exception

System.out.printin("Exception is caught");

}
/l Main Class

public class Multithread {

public static void main(String[] args)

{
int n = 8; // Number of threads
for (inti=0;i<n;i++) {
MultithreadingDemo object
= new MultithreadingDemo();
object.start();
}
}
}
OUTPUT:

Thread 15 is running
Thread 14 is running
Thread 16 is running
Thread 12 is running
Thread 11 is running
Thread 13 is running
Thread 18 is running

Thread 17 is running

22| Page

// Java code for thread creation by implementing

// the Runnable Interface

class MultithreadingDemo implements Runnable {
public void run()

{
try {
// Displaying the thread that is running
System.out.printin(
"Thread " + Thread.currentThread().getld()
+ " is running");
catch (Exception e) {
/I Throwing an exception
System.out.printin("Exception is caught™);
}
}
¥
// Main Class

class Multithread {
public static void main(String[] args)

{
int n = 8; // Number of threads

for(inti=0;i<n;i++){
Thread object
= new Thread (new Multithreading Demo());
object.start ();

i

OUTPUT:

Thread 13 is running
Thread 11 is running
Thread 12 is running
Thread 15 is running
Thread 14 is running
Thread 18 is running

Thread 17 is running

Thread 16 is running

RESULT:
Thus the Java program using Thread class and runnable interface for implementing Thread was
written, executed and the output was verified successfully.

23| Page

EX. No.7 PACKAGES

AlM:
To write a program in Java to implement Packages

ALGORITHM:

STEP 1. START

STEP 2. Import package
STEP 3. Create Class A
STEP 4. Create Class B
STEP 5. Get output.
SOURCE CODE:

package pack;

public class A {
public void msg() {
System.out.printin("Hello™);
}
}

/[save by B.java
package mypack;
class B {
public static void main(String args[]) {
pack.A obj = new pack.A(); //using fully qualified name
0bj.msg();

Output

Hello

Result:

Thus the program in java to implement Packages is executed successfully and the output is verified

24| Page

EX. No. 8 CREATING JAVA APPLETS

AlM:
To write a program in java to create Java Applets

ALGORITHM:

STEP 1: start the program
STEP2: Import applet
STEPa3: Import graphics
STEP 4: Add labels
STEP 5: STOP
SOURCE CODE:

import java.applet.Applet;
import java.awt.Graphics;
[*
<applet code="HelloWorld" width=200 height=60>
</applet>
*/
/I HelloWorld class extends Applet
public class HelloWorld extends Applet
{
/I Overriding paint() method
@Override
public void paint(Graphics g)
{
g.drawsString(*"Hello World", 20, 20);
}

}
Output

appletviewer

Helloworld

25| Page

RESULT:

Thus the program in Java to create Java Applets is executed successfully and the output is verified

26| Page

